Gary Tom

gtom@cs.utoronto.ca 🔸 +1 514-825-8203 🔸 gkwt.xyz 🔸 10 King's College Rd, Toronto, M5S 3G4 🔸 🛅 🔸 😰 🔸 🌚

I am a highly-motivated PhD student with a passion for applying evidence-based strategies to solve impactful problems. With a strong background in chemistry, physics, and machine learning, I am well-equipped to tackle challenging scientific problems with AI based approaches. My current interests are in the field of drug/materials design, as well as probabilistic and graph-based modelling of chemical properties. More broadly, I want to explore new fields in a dynamic research environment and have the chance to learn and try new things.

Relevant Experience

Aspuru-Guzik Matter Lab · University of Toronto

PhD Graduate Researcher

- Creating a package for probabilistic prediction on small datasets of molecules using TensorFlow. Examining the calibration of uncertainty in the models and their effects on Bayesian optimization and generalizability [1, 2].
- Implementing string-based generative models in PyTorch for realistic materials design tasks, ie. drug design, OLED and solar cell molecule design [3].
- Developing generative models (genetic algorithms and VAE) for low-data inverse design of molecules.
- Studying multi-objective optimization of chemical properties using various scalarizing functions. Accepted as poster for NeurIPS workshop [5].
- Engineering molecular graph features based on electronic structures with the goal of improving performance of graph-based neural networks on chemical structures.

SandboxAQ

AI PhD Resident

- Developed an equivariant 3D graph neural network for predicting the binding affinity of potential drug candidates to target proteins binding pockets, as part of research project with AQBioSim team.
- Collaborated with computational team to perform active learning virtual screens on large libraries of organic compounds. Delivered major milestone for client, with top suggestions for possible new pharmaceuticals.
- Methods developed are patent pending, with a manuscript currently under peer-review [4].

Laboratory for Atomic Imaging Research · University of British Columbia

VANCOUVER, BC Aug 2017 – Apr 2020

VANCOUVER, BC

TORONTO (REMOTE), ON

May - Aug 2023

TORONTO, ON

May 2020 - present

- Studied the luminescence of single organic photovoltaic molecules using scanning tunneling microscopy (STM). Presented findings as an invited speaker at IVC 2019 [7].
- Developed MATLAB analysis script to study strain in graphene samples, characterized by STM [8].

Laboratory for Atomic Imaging Research · University of British Columbia

Natural Science and Engineering Research Council (NSERC) Summer Researcher May – Aug 2016

 Implemented deconvolution algorithms to analyze scanning tunneling spectroscopy data of organic semiconductors. Algorithms reduced data processing time and improved overall accuracy of results [10].

Hendricks Lab · McGill University

MSc Graduate Researcher

MONTRÉAL, QC

Sep 2015 - Apr 2016

Undergraduate Research Student Created a robotics control system for fluorescence microscope and laser tweezers used for studying protein mechanics in biological samples.

Institute for Research on Exoplanets · Université de Montréal

Trottier Summer Intern

- MONTRÉAL, QC May - Aug 2015
- Created a suite of IDL scripts that analyzed large data sets of astronomical surveys to identify young star candidates based on X-ray and UV luminosities.
- Used Bayesian analysis of stellar velocities and positions to identify associations of co-moving stars.
- Identified over 300 previously unreported young star candidate targets for exoplanet imaging.

Technical Skills

- Proficient in Python, MATLAB, IDL, and LabView. Experience with FORTRAN, Java, and C.
- Highly experienced with common ML frameworks in Python: TensorFlow/Keras, PyTorch, JAX/FLAX, and scikit-learn.
- Experience with probabilistic prediction and classification models such as GPyTorch, and TensorFlow-Probability.
- Experience with generative modelling: variational autoencoder, genetic algorithms, and reinforcement learning. Worked with language models and graph-based models (PyTorch-Geometric) applied to chemical information.

Education	
University of Toronto	Toronto, ON
PhD in Physical Chemistry (Supervisor: Prof Alán Aspuru-Guzik) Studying the application of machine learning algorithms in accelerating drug and materials	2020 — present als discovery.
University of British Columbia MSc in Physics (Supervisor: Prof Sarah Burke) Thesis: <i>Scanning probe microscopy study of organic semiconducting molecules</i> .	Vancouver, BC 2017 – 2020
McGill University BSc Honours in Physics (Supervisor: Prof Peter Grütter) Graduated with First Class Honours, along with a minor in Interdisciplinary Life Sciences.	Montréal, QC <i>2013 – 2017</i>
Select Honours and Awards	
Postgraduate Scholarship Doctoral (PGS-D) Awarded by NSERC, provides 3 years of financial support for doctoral research in natural scie	2021–present nces and engineering.
Vector Research Grant Awarded by the Vector Institute, provides financial support to researchers involved in applied	2023 Al research.
Ontario Graduate Scholarship Awarded by the Province of Ontario and the University of Toronto, for academic excellence in	2020 graduate studies.
Alexander Graham Bell Canada Graduate Scholarship–Master's (CGS-M) Awarded by NSERC, for academic and research excellence in graduate studies.	2018–2019
Quantum Electronics and Technology Student Initiative Awarded by the Stewart Blusson Quantum Matter Institute (SBQMI), a major 3-year scholarshi in quantum materials at UBC.	<i>2017–2020</i> ip for graduate studies
Undergraduate Summer Research Award Awarded by NSERC, and Fonds de recherche du Québec-Nature et technologies, to nurture potential undergraduates by funding summer research positions.	2016 and develop research
Trottier Excellence Grant Awarded by Trottier Family Foundation to fund a summer internship at the Institute for Resear	2015 ch on Exoplanets.

Select Publications and Talks

- G. Tom, R. J. Hickman, A. Zinzuwadia, A. Mohajeri, B. Sanchez-Lengeling, and A. Aspuru-Guzik. Calibration and generalizability of probabilistic models on low-data chemical datasets with DIONYSUS. *Digital Discovery*, 2:759–774, 2023.
- 2. R.-R. Griffiths, L. Klarner, H. B. Moss, A. Ravuri, S. Truong, S. Stanton, **G. Tom**, et al. GAUCHE: A library for gaussian processes in chemistry. *Advances in Neural Information Processing Systems (NeurIPS)*, 2023.
- 3. A. Nigam, R. Pollice, **G. Tom**, K. Jorner, J. Willes, L. A. Thiede, A. Kundaje, and A. Aspuru-Guzik. Tartarus: A benchmarking platform for realistic and practical inverse molecular design. *Advances in Neural Information Processing Systems (NeurIPS)*, 2023.
- J. E. Crivelli-Decker, Z. Beckwith, G. Tom, L. Le, S. Khuttan, R. Salomon-Ferrer, J. Beall, R. Gómez-Bombarelli, and A. Bortolato. Machine learning guided AQFEP: A fast efficient absolute free energy perturbation solution for virtual screening. *Manuscript under review for publication*, 2023.
- N. Kusanda, G. Tom, R. J. Hickman, A. Nigam, K. Jorner, and A. Aspuru-Guzik. Assessing multi-objective optimization of molecules with genetic algorithms against relevant baselines. *Advances in Neural Information Processing Systems* (*NeurIPS*), Al4Materials Workshop, 2022.
- M. DeJong, A. Price, E. Mårsell, G. Tom, G. Nguyen, E. Johnson, and S. Burke. Small molecule binding to surfacesupported single-site transition-metal reaction centres. *Nature Communications*, 13(1):1–10, 2022.
- 7. **G. Tom**, E. Mårsell, G. D. Nguyen, T. Roussy, K. A. Cochrane, and S. A. Burke. Tunneling-induced luminescence on photovoltaic molecular heterodimers. 21st International Vacuum Conference (invited talk), 2019.
- 8. P. Nigge, A. Qu, É. Lantagne-Hurtubise, E. Mårsell, S. Link, **G. Tom**, M. Zonno, M. Michiardi, M. Schneider, S. Zhdanovich, U. Starke, C. Gutiérrez, D. Bonn, S. A. Burke, M. Franz, and A. Damascelli. Room temperature strain-induced landau levels in graphene on a wafer-scale platform. *Science Advances*, 5(11):eaaw5593, 2019.